高速複合機用有機感光体の設計技術

木原 彰子 和所 純一 中野 暢彦 下田 嘉英[†] ドキュメントシステム事業本部 要素技術開発センター [†]ドキュメントシステム事業本部 ドキュメントシステム事業部

複写機やプリンタ, FAX, それらの複合機は,より美しく・より速いコピー やプリントを提供するべく,技術開発競争が繰り広げられています。その 中で,当社は,2007年,最上位機種MX-M1100を発売しました。 ここでは,その最上位機種に搭載された高速複合機用有機感光体(図1) の開発において活用した当社独自の「電荷輸送材料の分子設計技術」と 「ロングライフ設計技術」について紹介します。

図1 MX-M1100 用有機感光体ドラム

はじめに

今や複写機, プリンタ, FAX, 及びそ れらの複合機は, ビジネスシーンに欠 かせないオフィス機器となっており, その用途はパーソナルユースから業務 用, 更には印刷のエリアまで拡大し, ま すます発展しています。

これらの機器は、その大半が1938年 にカールソンによって考案された電子 写真方式を用いており、その電子写真 プロセス(図2)において画像形成の 中核を担っているのが感光体です。 感光体の役割は、その表面に静電潜像を形成することにあります。材料としてはa-Siなどの無機材料も知られていますが、現状は有機材料を用いた有機感光体(OPC:Organic Photoconductor)が主流となっており、感光体 全体の99%以上を占めるまでになっています。

そのような有機感光体の中でも最も 一般的となっている積層型負帯電感光 体を例に光電変換デバイスとしての動 作原理を図3に従って説明します。先 ず,感光体表面が負帯電したところに 露光(hv)されると,電荷発生層(CGL: Carrier Generation Layer)に一対の電 子と正孔が発生します。この内,電子は 下引層(UCL: Under Coat Layer)から アルミ基板へ,一方,正孔は電荷輸送層 (CTL: Carrier Transport Layer)を移動 し表面の電子と中和することによって, 感光体表面に静電潜像を形成します。

このような有機感光体も1970年代に 実用化された当時は感度や耐久性に多 くの課題をかかえていましたが、その

電子写真プロセス

図3 積層型負帯電有機感光体の デバイス構成及び動作概略

図4 イオン化ポテンシャル (lp) と移動度 (µ) の分子シミュレーション計算結果と実測値の相関関係

後の技術革新にて飛躍的にその性能を 向上してきました。今回は,毎分110枚 という高速コピー,プリントを実現し た当社高速複合機MX-M1100用有機 感光体開発に活用した分子設計及びロ ングライフ設計技術に関して技術解説 していきます。

2 電荷輸送材料の分子設計

積層型有機感光体の性能は、露光に よって電荷発生層中に発生した一対の 電子と正孔から、電荷輸送層が①如何 に効率的に正孔を受け取り(電荷注入 効率). ②如何に早く表面に運ぶか (電 荷移動度)によって決まってきます。 それらの電荷輸送層の性能を決めて いるのが電荷輸送材料 (CTM: Carrier Transport Material) です。電荷輸送材料 のイオン化ポテンシャル (Ip) は前記① 電荷注入効率に大きく影響し、その正 孔移動度(µ)が前記②電荷移動度を 決めています。これら,感光体性能を決 めているイオン化ポテンシャル (Ip) と 正孔移動度(µ)を分子軌道法計算に 基づくシミュレーションによって予測 できる技術を開発しました。その分子 シミュレーション技術を今回開発した 高速複合機用有機感光体に採用してい る電荷輸送材料の分子設計に活用して います。

具体的には、図4に示した分子軌道 法計算によって求められた計算値と実 際の実測値との良好な相関関係から, 数百種の候補CTMについて予測され るイオン化ポテンシャルと移動度を求 め,目標物性を満足する10種程度の候 補に絞り込みました。次に,これらの候 補CTMを実際に合成し,種々の電子写 真特性を評価することにより,当社独自 の高性能電荷輸送材料を開発しました。

このように,当社独自の分子設計シ ミュレーション技術は,実際の電荷輸 送材料分子の試作合成回数を劇的に 減らし,新規な高性能電荷輸送材料の 開発期間を大幅に短縮できるだけでな く,開発コストの圧縮やそれに伴う環 境負荷低減にも寄与できるオンリーワ ン技術です。

3 ロングライフ設計

高速複合機用有機感光体開発において、その最表面にある電荷輸送層に 求められる重要な性能として、電荷輸 送性能の他にもう一つロングライフ化 (耐久性)が挙げられます。

ロングライフ化と言っても、単に① 膜削れし難い(耐摩耗性)だけではな く、②キズの付き難さ(耐キズ性)も重 要な性能です。これらの2つの性能を 達成するため、それら性能と電荷輸送 層の膜物性との相関関係を見出し,設 計指標として活用しました。

(1) 耐磨耗性設計

感光体は、電子写真プロセスの中で 様々な機械的ストレスを受けて膜減り (磨耗)していきます。例えば、現像部 における現像剤との摺擦、転写部にお ける転写材との摺擦、クリーニング部 におけるクリーニングブレード(ヘラ 状のゴム部材)との摺擦などです。

これらの物理的な接触に起因する磨 耗を個々に分解して実際の複合機を 使った耐刷試験を行うには、多大なコ ストと時間を要します。そこで、電荷輸 送層の膜減り量と相関関係が見出せる 物性値を探した結果、図5に示したよ うに弾性仕事率にある程度の相関関係 があることを見出し、耐摩耗性設計に おける指標としました。

弾性仕事率とは、物体にかけられた 応力に対して、その応力を取り除いた ときにどれだけ緩和できるかを示して おり、値が大きいほど応力緩和能力が 高くなります。つまり、電子写真プロ セス中で受ける機械的ストレスに対し て、それを永久歪として残らないよう な電荷輸送層の処方とすることが耐摩 耗性向上に必要な要件と言えます。具 体的には、電荷輸送層を構成する材料

選択において,前記電荷輸送材料と組 合わせる樹脂材料の構造や配合比率を 最適化しています。

(2) 耐キズ性設計

次に,ロングライフ化設計において, もう一つ重要な耐キズ性設計について 説明します。

感光体は,前述の通り電子写真プロ セス中で様々な機械的ストレスを受け ます。その際, 膜減りするだけでなく, 同時にキズが付いてしまいます。その キズに対して有効な物性値として,表 面自由エネルギー(y)を見出しまし た。図6に,表面自由エネルギー(y) と感光体表面に付くキズの深さを表す 最大粗度 (Rmax) との相関関係を示し ます。

表面自由エネルギー(y)とは,物体 表面の濡れ性に依存する物性値であ り,その値が小さいほど表面滑り性が 良好となります。具体的には,電荷輸送 層表面の表面自由エネルギーを小さく するため,電荷輸送層を構成する樹脂 の構造にシロキサン系の修飾基を導入 したポリカーボネート樹脂を採用しま した。

4 おわりに

当社高速複合機MX-M1100用有機 感光体は、これらの設計技術を活用し て, 感光体ライフ: 100万枚を達成しま した。

又, これら感光体としての耐久性と 電荷輸送層の物性値とを相関付けたロ ングライフ化設計技術は, 開発期間に おける期間短縮やコスト低減だけにと どまらず, 生産負荷の低減や市場にお ける廃棄物削減, 更にはメンテナンス 頻度削減に伴うユーザのトータルコス ト負担軽減に至るまで, 製品ライフサ イクル全般に亘る総合的な環境負荷低 減と省資源化に貢献しています。

今後も,更なる新規オンリーワン技 術開発によるより一層の社会貢献を目 指して鋭意つとめて参ります。