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１．Introduction

The vision of the Safe Mobile Information Delivery project 
is to provide a solution to dynamically detect the stress 
level of an automobile driver and use that information to 
reduce driver distraction from mobile data, such as alerts and 
notifications from a smart phone.  

S t ress a ffec t s the body’s phys io log ica l s ta te . The 
autonomic nervous system (ANS) is part of the peripheral 
nervous system that regulates the body’s major physiologic 
activities, including heart rate and respiratory rate. The ANS 
has two branches: sympathetic nervous system (SNS) and 
parasympathetic nervous system (PNS). The SNS branch 
helps prepare the body for action in response to potential 
threats (stress). The PNS branch is most active under relaxed 
situations and brings the body to a rest state. 

Studies have been done to identify physiological markers of 
stress detection. Many results indicate that Heart Rate (HR) 
and Heart Rate Variability (HRV) signals were significantly 
correlated to stress1）.  As a result, the measure of cardiac 
activity becomes an ideal and non-invasive way to evaluate 
the state of ANS and determine stress level. 

Developing a reliable stress detection algorithm is the first 
milestone for the Safe Mobile Information Delivery project.  

To achieve this, we created a static test environment to assess 
different stress detection algorithms.  Using the static test 
environment, we collected data and tuned the stress detection 
algorithms. Then, we created a system to collect and process 
dynamic driving data in real time to determine the driver’s 
stress level.

２．Static Environment and Analysis

We first created a static environment for data collection 
(Fig. 1 ).  The static environment allowed us to collect 
biometric data in a controlled setting. We then evaluated 
various stress detection algorithms.  Finally, we enhanced our 
algorithms in order to improve their accuracy.

２．１　Data Collection
２．１．１　Sensors

We u s e t h e Z e p h y r B i o H a r n e s s 3 s e n s o r . I t i s a 
compact physiological monitor module and incorporates 
Electrocardiogram (ECG) and breathing detection sensors. 
２．１．２　Controlled Stimulus 

We developed a PC based Controlled Stimulus application 
using PEBL.  PEBL is an environment for designing and 
creating psychology experiments.  Two widely utilized 
psychological or cognitive stressors are the Stroop color and 
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mental math tests2）. We enhanced PEBL’s sample Stroop 
color and mental math scripts to increase the stress level. 
The enhancements include audio alert, error count, score 
animation and shortened response timeout. The result shows 
that the improved Stroop color and mental math test can serve 
as a stressor in the static environment.
２．１．３　Tools

We created a test application tool to be the control hub of 
the static test environment. It automates the test procedure 
and controls the duration and action of each test period. It 
also records the start and end time of each test period so that 
we can align the biometric log data from the sensor with the 
corresponding test period. 
２．１．４　Experiment Protocol

11 healthy participants were monitored, 7 male and 4 
female. Some of the participants performed the test more 
than once. Participants were given detailed instructions to 
attach the BioHarness 3 sensor before the test. Testing was 
performed in a room with low lighting. Participants sat 
comfortably in a chair in front of the testing laptop. In order 
to eliminate the effect of physical activity, participants were 
asked to minimize physical activities during the tests. To avoid 
other uncontrolled events, participants were asked to leave 
cell phones outside the test room. During the stress period, 
participants were required to give correct answer to as many 
questions as possible. The participant ran the test application 
tool on the testing laptop.

The test application tool controls the periods of relaxation 
and stress, as follows:
１．1st relaxation period (15 minutes): Plays soft music 

while the laptop screen remains blank.
２．1st stress period (10 minutes): Executes Stroop test or 

mental math test.
３．2nd relaxation period (10 minutes): Recover period. 

Plays soft music while the laptop screen remains 
blank.

After the test, participants were asked to complete a 
questionnaire to identify the stress/relaxation level they 
encountered during various part of the test.

２．２　Data Analysis
２．２．１　Stress Detection Algorithm

Measuring cardiac activity is an ideal and non-invasive 
way to evaluate the state of the ANS and the stress level. In 
an ECG sample the RR interval refers to the time interval 
between two R peaks (Fig. 2 ). Heart rate variability (HRV) 
is the variation in the time interval between heartbeats. The 
most used HRV analysis involves time domain and frequency 
domain.
２．２．１．１　Time Domain

The time domain features include mean HR and mean RR 
and are usually considered a measure of physical workload.  
The frequency domain HRV is considered a mental workload 
measurement. However, for an individual who is performing 
light physical workload (such as driving a car), mean HR can 
also be sensitive to mental load3）.
２．２．１．２　Frequency Domain

HRV spectral analysis shows two important frequency 
bands:  low frequency (LF) 0.04−0.15Hz and high frequency 
(HF) 0.15−0.4Hz4）. Studies show that the power of the LF 
band results from the interplay between sympathetic and 
parasympathetic activity whereas the power of the HF band 
is the result of the parasympathetic control of the heart3）. To 
isolate the effect of SNS and PNS, most researchers use the 
ratio of LF to HF (LF/HF) as an index of stress2）. Higher LF/
HF ratios indicate higher stress; lower LF/HF ratios indicate 
lower stress. We evaluated three most widely used frequency 
domain HRV analysis methods, including Welch method, 

Fig. 1　Static Environment

Fig. 2　ECG sample
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static analysis and algorithm evaluation. We added some 
enhancements to HRVAS including algorithms to address the 
effect of respiration on HRV analysis.  

２．３　Static Result
２．３．１　Algorithm Evaluation

We evaluated three HRV frequency domain analysis 
algorithms, Welch method, Burg method, and Lomb-Scargle 
method. The following criteria was used to evaluate the 
algorithm,
・The last 5 minutes of relaxation was used as the 

baseline.
・The stress test has two 5-minute segments in the 

stress period. We considered the algorithm to have 
successfully detected the stress if there was a significant 
(>10%) jump in the LF/HF ratio, between the baseline 
and either of the two 5-minute segments. 

There are 21 valid data sets. Based on the evaluation criteria 
mentioned above, the success rate for each algorithm to 
differentiate stress from relaxation is: 
・Welch Method: 81%
・Burg Method: 67%
・Lomb-Scargle Method: 71%

２．３．２　Classify
We used the Weka 3.7.9 machine learning engine to train a 

classifier using different learning methods, including the J48 
decision tree, Bayes Net, and Naive Bayes. From all of the 
static data, we picked 93 training instances. There were 37 
with Stress ‘Yes’, and 56 with Stress ‘No’. 

Biometric data such as heart rate are very much dependent 
on each individual’s initial physiological level. To eliminate 
those factors, the data sets needed to be normalized. We used 
the min max normalization process for each feature 2） so all 
the values fell between 0 and 1. The normalized values were 
fed to the classifier. Fig. 5 shows the correctly classified 
instance rate with regard to different classifiers and different 

Burg method, and Lomb-Scargle method.
２．２．１．３　Effect of Respiration

Respiratory sinus arrhythmias (RSA) are a cardiorespiratory 
phenomenon character ized by the HR or RR interval 
fluctuating with respiration. Usually, the heart rate increases 
during the inspiration and decreases during expiration. The 
respiration plays an important role in the heart rate and the 
parasympathetic activity is closely related to RSA. 

Traditional HRV analysis uses a fixed frequency band for 
calculating power spectral density (PSD) in the LF and HF 
band. Slow breathing rate (BR) can cause an increase in the 
LF band power. This is a false-positive increase because it is 
caused by parasympathetic activity rather than the sympathetic 
(Fig. 3 ). 

Our analysis of the data shows that the effect of respiration 
on HRV frequency domain analysis is too important to ignore. 
Instead of using fixed LF and HF bands, we implemented an 
enhanced HRV analysis that uses the respiration frequency 
(RF) to dynamically adjust the LF and HF bands. The HF 
range is from RF*0.65 to RF*1.35; LF range is from 0.04 
to RF*0.655）. Our results demonstrate that this approach 
significantly improves the accuracy of the frequency domain 
HRV analysis (Fig. 4 ). After RF adjustment, all three 
algorithms successfully detect stress; whereas without the 
adjustment, all three algorithms produce false-positive high 
LF/HF ratios for the relaxation period, and low LF/HF ratios 
for the stress period. We also verified that RF adjustment does 
not adversely affect data collected during normal breathing. 
２．２．２　Tools

Several tools are used in the post processing of the static 
data. The Zephyr BioHarness Log Downloader is used to 
download the log from the BioHarness 3 hardware to the PC; 
the Zephyr to Kubios File Converter is used to convert the RR 
file to the format that most HRV analysis software accepts. 

HRVAS is an open source HRV analysis PC application 
developed using MATLAB. We used it as a baseline for our 

Fig. 3　 Effects of slow breathing rate in the LF and HF band 
during a relax session. Relax with normal breathing, 
BR = 12 .6/min (left), and relax with deep breathing, 
BR = 6 .5/min (right)

Fig. 4　 LF/HF ratio before applying respiratory frequency 
(left), and after applying respiratory frequency (right). 
(dotted curve: Welch method, solid curve: Burg 
method, and dashed curve: Lomb-Scargle method)
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combinations of features. We conclude that:
・Frequency domain (Welch method, Burg method, and 

Lomb-Scargle method) combined with time domain 
(mean HR, mean RR) performs better than only 
frequency domain or time domain.
・Overall, J48 decision tree performs better than the 

others.
・Welch related features perform better than the others

３．Dynamic Environment and Analysis

We developed a portable system to collect and process data 
in real time for the dynamic driving environment (Fig. 6 ). 
The system performs data collection and data analysis.

３．１　Data Collection
３．１．１　Data Acquisition Module

The center of the data collection is the Data Acquisition 
Module (Fig. 7 ). Running on an Arduino platform, the Data 
Acquisition Module collects biometric data and vehicle data. 
It has six keys to log external driving events, such as turn, 
lane change and traffic jam. It has an LCD panel to display 
real time RR, BR, and speed data. For portability, we designed 
a 3D printed enclosure for the Data Acquisition Module.  The 
data collected by the Data Acquisition Module is transmitted 
to the Data Analysis Module in real time. 
３．１．２　Experiment Protocol

Each drive test requires two people, a participant driver and 
an observer. The observer is to mark events that occur during 
the drive test. The observer also monitors the LCD display on 
the Data Acquisition Module to make sure that valid RR, BR, 
and speed are displayed.

At the time of this article, two drivers have participated 
in the drive test. The four sets of data collected proved the 
functionality of the Data Acquisition Module and dynamic 

drive experiment protocol. More participants and data samples 
are to be collected in the next phase of the project to further 
analyze stress in driving condition. 

３．２　Data Analysis 
Initially, we processed the data collected from the Data 

Acquisition Module using enhanced algorithms and tools 
developed during the Static Environment testing.  We did this 
to verify the data collected from the Data Acquisition Module 
and to confirm that the algorithms developed during the 

Fig. 5　 Correctly classified instance rate. (Welch: Welch method, AR: Burg method, LS: 
Lomb-Scargle method, mRR: mean RR, mHR: mean HR)

Fig. 6　System setup for dynamic driving environment

Fig. 7　Data Acquisition Module
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Static Environment testing could detect stress in a Dynamic 
Environment.  We added additional features to the HRVAS 
application to analyze and display vehicle data and external 
driving events.

We then developed a real time Data Analysis Module using 
an ARM 11 application processor (Raspberry Pi). In real 
time, it processes collected biometric and vehicle data and 
determines whether the driver is suffering from mental stress. 
To do this, we ported the static test environment MATLAB 
algorithms to Python running on the Data Analysis Module. 

HRV has been traditionally calculated from five minutes or 
more recording, however, the ultra short term HRV analysis6） 
shows that the shortest duration to identify stress from the 
baseline is 10 seconds for the time domain feature such as 
mean HR; 50 seconds for the frequency domain feature 
such as LF/HF. We average mean HR in a 10-s window and 
calculate frequency domain feature in a 60-s window.

The sample rate of the Vehicle data is 10Hz. We average the 
speed and acceleration using a 1-s window. Studies show that 
acceleration rates above 3-4m/s2 are indicative of aggressive 
driving7）. Evidence suggests that aggressive driving produces 
higher levels of stress than normal driving8）. Thus, detection 
of aggressive driving could increase the speed and accuracy of 
our algorithms in determining stress.9）

４．Conclusion 

We successfully created the static test environment, test 
protocol and collected samples to evaluate several frequency 
domain HRV analysis algorithms. During the data analysis, 
we further improved the algorithms to incorporate the 
respiration frequency data. This improvement has significantly 
increased stress detection accuracy especially during times 
of low respiration rate. From the 21 valid test sets, the best 
frequency domain algorithm, the Welch method, achieved 
81% accuracy differentiating stress from the baseline. By 
combining time domain features with Welch method we have 
observed accuracies as high as 96.8%. The static analysis 
provides a good foundation for dynamic driving analysis. 
We successfully developed a real time data acquisition and 
analysis module for the dynamic driving environment and 
created a dynamic driving protocol and collected data.

In the next phase of the project, we will collect more 
data and improve the system and algorithms for dynamic 
environments to provide enhanced rejection of errors induced 
by electrical noise and missing data.  We will also add an 
accelerometer and gyroscope to provide more precise vehicle 

data to the acquisition system. These will provide richer 
information about turns, movement, rotation, etc, which could 
help reveal driving style10） and accompanying mental stress. 
We hypothesize this information will improve our detection 
speed and accuracy.  We will also study contactless biometric 
sensors to facilitate remote detection of biometric data from 
the driver.

With fast and accurate algorithms for detecting stress, we 
will be able to develop a platform for Safe Mobile Information 
Delivery, by controlling what information is displayed to the 
driver based on their stress level.
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